Congruences Involving Bernoulli Numbers and Fermat–Euler Quotients

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruences involving Bernoulli and Euler numbers

Let [x] be the integral part of x. Let p > 5 be a prime. In the paper we mainly determine P[p/4] x=1 1 xk (mod p2), p−1 [p/4] (mod p3), Pp−1 k=1 2 k (mod p3) and Pp−1 k=1 2 k2 (mod p2) in terms of Euler and Bernoulli numbers. For example, we have

متن کامل

General Congruences Involving the Bernoulli Numbers.

I The seed used was kindly supplied by the California Packing Corporation. 6 The assays for p-amino benzoic acid were carried out by Prof. G. W. Beadle and Prof. E. Tatum, Stanford University, using a mutant of Neurospora crassa for which p-amino benzoic acid is an essential supplement. 7In 5. experiments sulfanilamide or its derivatives were applied to intact tomato plants grown in the greenho...

متن کامل

New Types of Congruences Involving Bernoulli Numbers and Fermat's Quotient.

make Mp prime are 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 and 257. Comparison of this list with the correct data recorded in the top line of the table presented below shows that Mersenne made five mistakes. p = 67 and 257 do not yield prime values for Mp, and p = 61, 89 and 107 were not included in his list of special primes. With reference to explicit factoring, attention should be called to a val...

متن کامل

Congruences involving Bernoulli polynomials

Let {Bn(x)} be the Bernoulli polynomials. In the paper we establish some congruences for Bj(x) (mod p n), where p is an odd prime and x is a rational p-integer. Such congruences are concerned with the properties of p-regular functions, the congruences for h(−sp) (mod p) (s = 3, 5, 8, 12) and the sum P k≡r (mod m) p k , where h(d) is the class number of the quadratic field Q(d) of discriminant d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2002

ISSN: 0022-314X

DOI: 10.1006/jnth.2001.2728